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1% INTRODUCTION

An important engineering problem which occurs in many internal and
external flow situations is laminar to turbulent transition. Although there
appears to be a variety of physical mechanisms which may lead to boundary
layer transition, only one is even partially understood in theoretical terms,
This mechanism, the growth of linear Tollmien-Schlichting waves in a bound-
ary layer, can lead to transition as shown, for example, by the data of
Klebanoff, Tidstrom and Sargentl, The growth of small amplitude Tollmien-
Schlichting waves in a boundary layer is reasonably well described by the
usual Orr-Sommerfeld equation; the recent work of Bouthierz, GasterS, and
Saric and Nayfeh4 improves the agreement by taking account of nonparallel
effects in the boundary layer. The data of Klebanoff, Tidstrom and Sargent
show that after the linear amplification of the Tollmien-Schlichting waves,
three-dimensional and nonlinear effects become important, leading to a

secondary instability and then transition.

This report describes the results of numerical calculations similar to
the laboratory experiments of Klebanoff, Tidstrom and Sargentl, except for
the fact that the calculations are confined to two space dimensions, There
are no other restrictions; the disturbance need not be small as no lineariza-
tion is performed, and the full equations are solved so the flow is automati-
cally nonparallel. The numerical computations are similar to laboratory

experiments in that Tollmien-Schlichting waves of varying amplitudes are

1Klebamoff, P.S., K.D. Tidstrom and L, M, Sargent, "The Three-Dimensional
Nature of Boundary Layer Instability, " J, Fluid Mech., Vol. 12, 1962,
pp. 1-34,

2Bouthier, Michel, "Stabilite Lineaire des EScoulements Presque Parall‘eles, 4
J. de Mécanique, Vol. 11, No. 4, December 1972, pp. 599-621 and Vol. 12,
No. 1, March 1973, pp. 75-95,

3
Gaster, M., "On the Effects of Boundary-Layer Growth on the Flow-Stability,"
J. Fluid Mech., Vol. 66, 1974, pp. 465480,

4 . e
Saric, W.S. and A, H. Nayfeh, Virginia Polytechnic Institute and State Uni-
versity, "Non-Parallel Stability of Boundary- Layer Flows, " 1975, VPI-E-
75-5,




propagated in a Blasius boundary layer. The fact that the calculation is two-

dimensional has the disadvantage that it cannot predict the three-dimensional
data. On the other hand, it is advantageous to be able to investigate the non-
linear interactions without the complications of a third dimension. It also d
allows qualitative comparisons with nonlinear stability theory (see Stewartson~
for a recent review of this subject). The comparisons can only be qualitative
because the nonlinear stability analyses known to these authors are only for

parallel flows (such as Couette flow) and are valid only in the vicinity of the

critical Reynolds number,

Studies of boundary-layer stability similar to the present work have been
carried out by Faselé’ 7. His published work describes solutions to the un-
steady Navier-Stokes equations in which the amplitude of the disturbance is
small and, therefore, nonlinear effects are unimportant. However, he has
indicated in a private communication that he has also obtained solutions in
which nonlinear effects are present and found these solutions qualitatively

similar to the results of Murdock8.

This report describes a portion of an extended numerical study of
Blasius boundary layer in the Reynolds number range of transition. An
earlier paper by Murdock8 gives a more detailed description of the formula-
tion, the assumptions and the numerics as well as some of the early results.

Additional numerical results are presented herein.

5Stewartson, K., "Some Aspects of Nonlinear Stability Theory, " Polish
Academy of Sciences, Vol. 7, 1975, pp. 101-128.

Fasel, Hermann F., "Numerical Solution of the Unsteady Navier-Stokes
Equations for the Investigation of Laminar Boundary Layer Stability, "
Proceedings of the Fourth International Conference on Numerical Methods in
Fluid Dynamics, Springer-Verlag, Berlin, 1974, pp. 151-160,

7Fa.sel, Hermann F., "Investigation of the Stability of Boundary Layers by a
Finite-Difference Model of the Navier-Stokes Equations, " J. Fluid Mech.,
Vol, 78, 1976, pp. 355=383.

8Murdock, John W., "A Numerical Study of Nonlinear Effects on Boundary-
Layer Stability, " AIAA 15th Aerospace Sciences Meeting, Paper 77-127,
Submitted to the AIAA Journal,




2. PROBLEM FORMULATION

The equations which are solved together with the boundary conditions

are given in this section for completeness.

The equations are solved in dimensionless parabolic coordinates '3

and 57, which are related to the dimensional Cartesian coordinates, x and vy,

2
x + iy =x1[§+in (ZRX>_1/2] (1)
1

where X is a typical distance from the leading edge, and RX is the Reynolds

as follows

number based on freestream velocity and Xy. The time is m%’:lde dimension-
less with the freestream velocity and with X

T 1:Uoo/x1 : (2)

e stream function and vorticity are the dependent variables, and
dimensionless versions of these variables are defined in terms of the dimen-

sional quantities ¥ and w.

1/ 152

Y = @uU_ x $E = 2vU_x,)"" g (3)

1

w=u_[u_/@wx)] %0/ (4)

where V is the kinematic viscosity., The dependent variable f reduces to the

usual Blasius dimensionless stream function when the solution is not a func-

tion of £ and T.




The equations solved are a slightly simplified version of the Navier-
Stokes equations referred to as the parabolized vorticity equations (see
Ref. 8).

= Z
R L g, ﬁL[g77n/<26 Rxl>]€€ i

£Q = gnn+g€€/(2Rxl). (6)

The equation set is solved in the space

ISES<R /R >1/2 (7)
b |

0sn<oo (8)

O T (9)

The equations are first order in time and are integrated from a Blasius

initial condition at T = 0

& = ff s efBlasius (10)

The four boundary conditions in the p-dimension are

= =0 = (] 11
g g77 n (11)
glg = £=1n-8
7 =00 (12)
2=0
where 8 is a constant characteristic of the displacement thickness.




The upstream boundary conditions in £ are a linear combination of the
Blasius solution and a time periodic solution of the Orr-Sommerfeld equa-

tion.

+ A Re[d(n) exp(-iwn]

B = fBlasius

gs = fBlasius - 2AdIm[@(n) exp(-iwn]

where @ is the Orr-Sommerfeld solution and A is some fixed amplitude. The
real part of the dimensionless wave number, @, and the real part of the di-
mensionless frequency, w, are defined in terms of the corresponding dimen-
sional quantities

(14)

w=wx /U a = ax
1 oo’ 1

A

The third order system in § requires only one downstream boundary

condition

g€€€ =g (15)

These equations are solved using a spectral method in both space
dimensions; a form of Chebyshev polynomial expansion is used in each dimen-

sion. The solution is updated in time with an explicit finite difference scheme.

s NUMERICAL RESULTS

In Ref. 8, the numerical results were restricted to one case with the
emphasis on a comparison of the small and large amplitude Tollmien-
Schlichting waves. In this report, the earlier work is extended to include:
(1) calculations with additional physical parameters which show that the
results in Ref. 8 may be somewhat atypical, (2) calculations with a longer
streamwise region in order to better characterize the nonlinear behavior,
and (3) details of the flow in the region where the behavior is very different

from that assumed in nonlinear stability theory analyses.

- N




As an introduction, consider three related figures taken from

Murdockg. These figures depict calculations in which a periodic Orr-
Sommerfeld disturbance is introduced into the boundary layer at an x-

Reynolds number of 105 with a dimensionless frequency given by

W =wx,;/U_ = 13.19 (16)
Figure 1 shows the normalized amplitude of the perturbation velocity well
down in the shear layer at some time after the Tollmien-Schlichting waves
have propagated through the domain. The solid curve corresponding to a
small amplitude disturbance has, as expected, a behavior very similar to
a modulated sinusoid. The dotted curve shows substantial effects of on-
linear distortion and a small change in wave speed. A significant feature
of Fig. 1l is that the positive peak of the large amplitude wave is bulged to
the right upstream of Rx =1.7x 105 and bulged to the left further down-

stream.

It is difficult to extract information from waveforms, such as those
shown in Fig. 1l; therefore, these solutions have been Fourier transformed
in time. The time Fourier transformed version of Fig. 1 given in Fig. 2
shows that the amplitude variation of the nonlinear primary mode is not
changed very much from its linear counterpart. This behavior is in agree-
ment with the usual nonlinear stability theory. Up to a Reynolds number of
about 1,3 x 105, the growth rate of the nonlinear wave (considering the
energy in the first two modes) is greater than the growth rate of the linear
wave. The possibility of this type of behavior is also contained in nonlinear
stability theory. However, the behavior of the second mode beyond RX =
| P 105 was unexpected in that the amplitude first decavs and then grows
again, the minimum occurring at about Rx =1.7x 105. The minimum of the
second mode in Fig., 2. occurs at about the same location as the change in

nonlinear wave form in Fig. 1.
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Although the behavior in Figs. 1 and 2 is related, the change in wave
shape in Fig. 1 cannot be explained on the basis of Fourier amplitude alone
but must also depend on the relative phase of the first two modes. Accordingly,
Fig. 3 shows the sine of the phase angle of the first two modes as a function of
Reynolds number for the same conditions as Figs. 1 and 2. In nonlinear
stability theory, it is always assumed that the second temporal harmonic is
also a second spatial harmonic. If every other minimum of the dotted curve
in Fig. 3 coincided with the minimums of the solid curve, then the dotted
curve in Fig. 3 would be a spatial harmonic of the solid one. The figure shows
that at 7= 0.2 the nonlinear theory assumptions are in good agreement with
the numerical solution. The dotted curve is slightly to the right of the location
where a harmonic curve would be upstream of Rx = 105 and then shifts
abruptly to the left downstream of that station, This phase behavior is con-
sistent wsith Fig. 1 in which the bulge shifted from right to left at Rx =
I, %x 10,

Figures 4, 5 and 6 show results similar to that presented in the first
three figures for a higher Reynolds number and a higher dimensionless (lower
dimensional) frequency with approximately the same amplitude of the Orr-
Sommerfeld upstream boundary condition. Figure 4 demonstrates that there
is significant distortion of the wave due to nonlinear effects, but in contrast to
Fig. 1 the bulge is always to the left of the peak. The Fourier amplitudes
are plotted in Fig. 5; the second mode again has a relative minimum but not
nearly as dramatic as the one in Fig. 2. Finally, as expected from Fig. 4,
Fig. 6 shows no significant variation in the relative phase. From these re-
sults, it is concluded that the first set of solutions may be atypical in that the
second mode has a sharp minimum correlated with a phase shift; nevertheless,
these solutions are more interesting precisely because of this unexpected be-
havior. Consequently, the remainder of the paper will be devoted to describ-
ing in detail the first solution, with emphasis on the region in the flow in
which it differs qualitatively from both the second solution and nonlinear sta-

bility theory.

-13-
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One obvious question raised by Fig. 2 is, Does the amplitude of the

second mode grow subsequent to Rx =202 x 105 or is there another mini-
mum? A calculation with a longer range in x has been completed, and the
results in Fig. 7 show that the amplitude of the second mode increases
monotonically downstream of the minimum. It is also found that there are
no further phase shifts; the behavior for Rx > 1.7 x 105 in Figs. 1 and 3

persists downstream at least to Rx =2.8x 105.

The phase behavior at n = 0.2 shown in Fig. 3 is, as was noted, very

much as expected; the second temporal harmonic is very nearly a second

spatial harmonic. Further study of the numerical solutions has shown that
the results illustrated in Fig. 3 are not typical of the whole boundary layer.
The solutions demonstrate that there is an anomalous region for 1.0 £ n<1.8
in the vicinity of RX =1.7x 105. The anomaly is illustrated in Figs. 8 and 9.
Figure 8 is qualitatively similar to Fig. 3, although the phase variation of the
secondary at 7 = 0. 8 in the vicinity of Rx = 1,74 x 104 is more rapid than
elsewhere. The phase plot at n = 1.0 (Fig. 9) is quite different; one complete
oscillation cycle has disappeared and the secondary curve tracks the primary
curve in a region near Rx =1.7x 105. This behavior, with one less oscilla-
tion cycle than expected, is present out to a value of n=1.8, Atn =2,0 and
beyond, the behavior of the secondary is again consistent with nonlinear sta-

bility theory.

In order to better characterize the anomalous region, it is useful to
look at the variation of the Fourier amplitude of the velocity across the bound-
ary layer. The behavior away from the region of interest is as shown in
Figs. 10 and 11. In both these figures, the shape of the secondary is very
similar to that of the primary except for the fact that the maximum and phase
reversal points are closer to the wall in the case of the secondary., As the
figures show, this behavior appears both upstream and downstream of the

region with anomalous phase.
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The Fourier amplitudes of both the first and second modes in the

vicinity of Rx =1.7x 10S have been plotted; there is no significant varia-
tion of the first mode in this region, but the shape of the Fourier amplitude
of the second mode varies rapidly with Rx in this region. Figures 12, 13

and 14 show the variation of the second mode profiles with Rx' The second
mode at Rx = 1,62 x 105 (Fig. 12) has the typical behavior of the second mode
as shown in the Figs. 10 and 11. Going downstream, a third relative maxi-
mum develops between 1 of about one and two; at Rx =1.74 x 105 (Fig. 13},
the atypical structure is best developed. Downstream of this station (Figs.
13 and 14), the additional relative maximum disappears, and the second mode
returns to its more usual shape. The third maximum which appears between

n of about one and two is in the region of anomalous phase behavior.

The preceding paragraphs have described an unexpected behavior of
the second harmonic. Although the results have concentrated on the behavior
of the secondary, the second mode is a forced mode; therefore, its behavior
should be dominated by the behavior of the primary. With this in mind, the
behavior of the primary has been carefully investigated to see if there is any
change in character which could explain the previous results. As noted, no
significant change in the Fourier amplitude of the primary has been found.
However, the phase behavior is another matter. Figure 15 shows a plot of
the phase of f,',] versus n at two Reynolds numbers, one well upstream of the
region of interest and one well downstream. (The phase has been arbitrarily
set to zero at the wall to facilitate comparison of the two curves.) At Rx =
105, the phase first rises to nearly 71/4; then in the "phase reversal region”
the phase decreases to a value less than -37m/4, At RX = 22X 105, the slope
of the phase change in the "phase reversal region" is changed to positive,
and the phase increases from a nominal /4 to 57/4 (shown as -37/4 in the
figure). Although plots of Fourier amplitude suggest that there is a "phase

reversal point, "

curves such as those in Fig. 15 show that in fact the phase
change occurs over a finite region and may have either a positive or a nega-

tive slope. These results are consistent with solutions of the Orr-Sommerfeld

wl2fa
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equation., In order for the phase reversal to occur at a point, both the real
and imaginary parts of that solution would have to be zero at the same point.
This is in general not true--a rapid phase change does occur in the vicinity
of the zero of the real part because the imaginary part is much smaller than
the real part. Solutions to the Orr-Sommerfeld equation demonstrate that the
outermost zero of the imaginary part (of d@/dy) moves out with increasing
Reynolds number relative to the zero of the real part. When the zero of the
imaginary part is closer to the wall than that of the real part, the phase
change has a negative slope (similar to Fig. 15 at Rx = 105). When the zero
of the imaginary part is outside that of the real part, the phase change has a

positive slope.

Figure 15 shows that the phase behavior of the primary mode changes
character in the solution region. A careful inspection of curves such as
those in Fig. 15 shows that in the present solution the change in behavior
occurs at Rx sl FLooe 105, This correlates very well with the location of
the minimum amplitude point of the second harmonic in Fig. 2. Because it is
believed that the primary must control the secondary and because the change
in the phase behavior of the primary occurs in the anomalcus region, it is
concluded that this phase behavior causes the anomalous behavior of the

secondary,

It should be noted that the flow region which is not in qualitative agree-
ment with nonlinear stability theory is localized in both space dimensions.
The Reynolds number based on a Tollmien-Schlichting wave length for the
present problem is about 2 x 104, and so the anomaly is confined to roughly
one wave length., As noted, the region of interest is also confined to values
of n between one and two. This fact implies that one-dimensional wave
theories, such as nonlinear stability theory, cannot predict the details of
such regions in which the wave phenomena are clearly not one-dimensional,
The existence of such a region could be predicted by linear stability theory

because the first mode is reasonably well modeled by the linear theory.




A possible criticism of the present results is that the upstream
boundary condition is somewhat artificial. This is true because a large
amplitude pure sinusoidal disturbance is imposed upstream. In any real
flow situation in which a large amplitude disturbance developed either from
being amplified or from external noise sources, the higher modes would be
present. On the other hand, the present calculation is a well defined and
repeatable method of learning about the nonlinear flow behavior. It is also
reasonable to assume that far anough downstream of the upstream boundary,
the details at that boundary are unimportant., It seems likely that the
present results are not far enough from the upstream boundary to be inde-
pendent of it, although further numerical studies are required to quantify
this conjecture. A final point is that the results presented here illustrate a
new and unexpected solution which may lead to a better understanding of

high Reynolds number flows, regardless of how these flows are created,

Another question which should be addressed is, Are the present results
real or are they somehow caused by the numerics? There is no evidence
that numerical errors have influenced the present results. Reference 8
shows comparisons of various calculations which lend credence to the re-
sults. Subsequent to the publication of that paper, the longer streamwise
calculation shown in Fig. 7 was completed, A comparison of Figs. 3 and 7
illustrates the agreement of these two calculations over their common range
of validity. However, the numerics do impose a limit on the amount of infor-
mation which can be extracted from the solution. In particular, the phase
curves (e.g., Figs. 8 and 9) are obtained by dividing one component of the
Fourier amplitude by its absolute value, When these numbers are small,
the resultant phase curves may be in error. Phase plots which attempt to
show the details intermediate between Figs, 8 and 9 would possibly be in
error, However, the amplitude of the second mode is certainly large enough
to be meaningful at values of n like 0.4 and 1.5 (see Figs. 12, 13 and 14),

At these values of 17, the phase behavior is similar to that of Figs. 8 and 9.
Thus, it is concluded that the numerics are accurate enough to predict the
presence of the anomalous region, but the details of the phase going from one

region to another are uncertain,
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4, CONCLUDING REMARKS

The numerical results presented herein provide insight into the be-
havior of nonlinear Tollmien-Schlichting waves. Although the solutions
are qualitatively similar to those of nonlinear stability theory in most re-
gions, flows incompatible with one-dimensional wave models are also found
to exist. The details of the first and second temporal harmonics are pre-
sented with an emphasis on the anomalous region. It is argued that the
first harmonic drives the secondary and, therefore, must control it every-
where. A change in the phase behavior of the primary occurs in the
anomalous region, and it is suggested that this change causes the anomaly.
Because the first mode is reasonably well modeled by linear stability theory,
this theory may be used to predict the approximate location of the type of

anomalous region described herein.
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